LogoLogo
HomeProductsDownload Community Edition
  • Lenses DevX
  • Kafka Connectors
  • Overview
  • Understanding Kafka Connect
  • Connectors
    • Install
    • Sources
      • AWS S3
      • Azure Data Lake Gen2
      • Azure Event Hubs
      • Azure Service Bus
      • Cassandra
      • GCP PubSub
      • GCP Storage
      • FTP
      • JMS
      • MQTT
    • Sinks
      • AWS S3
      • Azure CosmosDB
      • Azure Data Lake Gen2
      • Azure Event Hubs
      • Azure Service Bus
      • Cassandra
      • Elasticsearch
      • GCP PubSub
      • GCP Storage
      • HTTP
      • InfluxDB
      • JMS
      • MongoDB
      • MQTT
      • Redis
  • Secret Providers
    • Install
    • AWS Secret Manager
    • Azure KeyVault
    • Environment
    • Hashicorp Vault
    • AES256
  • Single Message Transforms
    • Overview
    • InsertFieldTimestampHeaders
    • InsertRecordTimestampHeaders
    • InsertRollingFieldTimestampHeaders
    • InsertRollingRecordTimestampHeaders
    • InsertRollingWallclock
    • InsertRollingWallclockHeaders
    • InsertSourcePartitionOrOffsetValue
    • InsertWallclock
    • InsertWallclockHeaders
    • InsertWallclockDateTimePart
    • TimestampConverter
  • Tutorials
    • Backup & Restore
    • Creating & managing a connector
    • Cloud Storage Examples
      • AWS S3 Source Examples
      • AWS S3 Sink Time Based Partitioning
      • GCP Source
      • GCP Sink Time Based Partitioning
    • Http Sink Templating
    • Sink converters & different data formats
    • Source converters with incoming JSON or Avro
    • Loading XML from Cloud storage
    • Loading ragged width files
    • Using the MQTT Connector with RabbitMQ
    • Using Error Policies
    • Using dead letter queues
  • Contributing
    • Developing a connector
    • Utilities
    • Testing
  • Lenses Connectors Support
  • Downloads
  • Release notes
    • Stream Reactor
    • Secret Providers
    • Single Message Transforms
Powered by GitBook
LogoLogo

Resources

  • Privacy
  • Cookies
  • Terms & Conditions
  • Community EULA

2024 © Lenses.io Ltd. Apache, Apache Kafka, Kafka and associated open source project names are trademarks of the Apache Software Foundation.

On this page
  • Schema.Struct and a Struct Payload
  • Schema.String and a JSON Payload
  • No schema and a JSON Payload

Was this helpful?

Export as PDF
  1. Tutorials

Sink converters & different data formats

This page describes configuring sink converters for Kafka Connect.

You can configure the converters either at the Connect worker level or at the Connector instance level.

Schema.Struct and a Struct Payload

If you follow the best practice while producing the events, each message should carry its schema information. The best option is to send AVRO.

key.converter=io.confluent.connect.avro.AvroConverter
key.converter.schema.registry.url=http://localhost:8081
value.converter=io.confluent.connect.avro.AvroConverter
value.converter.schema.registry.url=http://localhost:8081

This requires the SchemaRegistry.

Schema.String and a JSON Payload

Sometimes the producer would find it easier to just send a message with Schema.String and a JSON string. In this case, your connector configuration should be set to value.converter=org.apache.kafka.connect.json.JsonConverter. This doesn’t require the SchemaRegistry.

key.converter=org.apache.kafka.connect.json.JsonConverter
value.converter=org.apache.kafka.connect.json.JsonConverter

No schema and a JSON Payload

Many existing systems publish JSON over Kafka and bringing them in line with best practices is quite a challenge, hence we added the support. To enable this support you must change the converters in the connector configuration.

key.converter=org.apache.kafka.connect.json.JsonConverter
key.converter.schemas.enable=false
value.converter=org.apache.kafka.connect.json.JsonConverter
value.converter.schemas.enable=false
PreviousHttp Sink TemplatingNextSource converters with incoming JSON or Avro

Last updated 1 year ago

Was this helpful?